

Частотно-регулируемый электропривод – инструмент энергоресурсосбережения.

Музалевский Л.В. директор ООО «Научно-производственная фирма «ИРБИС».

http://irbis-privod.ru, dir@irbis-privod.ru

Частотно-регулируемый электропривод (ЧРЭ) – это комплекс, который включает в себя:

- трёхфазный асинхронный электродвигатель переменного тока (ЭД);
- преобразователь частоты (ПЧ).

Регулируемые электроприводы применяются во всех отраслях промышленности на механизмах, где требуется регулирование какого-либо физического параметра: скорости, усилия, температуры, давления, и т.д.

Принципы частотного регулирования электроприводов механизмов целесообразно показать на примере наиболее распространенного устройства - насосного агрегата в системе водоснабжения.

На перекачку чистых и сточных вод в России расходуется 12 млрд. кВт·ч электроэнергии.

Чтобы подать воду в кран потребителя, нужно создать необходимый напор (Н) на выходе насосной станции. Его величина складывается из двух составляющих:

□ статической (Нс) - равной разнице абсолютных высот расположенного выше других потребителя и насосной станции, плюс необходимое давление у потребителя;

и динамической - необходимой для преодоления гидравлического сопротивления (S) системы трубопроводов току воды, и зависящей от величины водоразбора (Q).

$$H = Hc + SQ^2$$

Показанная зависимость характеризует систему водоснабжения, однозначно определяя величину необходимого напора на выходе насосной станции для водоснабжения самого дальнего потребителя в зависимости от величины водоразбора из системы.

Производительность насоса определяется из произведения величины обеспечиваемого им напора на соответствующую величину подачи, и фактически пропорциональна скорости вращения ротора насоса.

Допустим, водоснабжение обеспечивается одним насосным агрегатом, выбранным по максимальному напору и производительности (наиболее распространённый вариант). Тогда при величинах водоразбора меньших максимальной этот насос будет создавать избыточное давление в системе (Н). Это опасное для системы трубопроводов давление может в несколько раз превышать необходимый напор.

Для борьбы с этим явлением наиболее распространён **метод дроссельного регулирования** - избыточное давление уничтожается на выходной задвижке с насосной станции. При её прикрытии создаётся сопротивление току воды. Характеристика системы при этом изменяется таким образом, чтобы необходимый напор на выходе насосной станции, при данной величине водоразбора, соответствовал характеристике насоса.

Применение частотного регулирования ставит ситуацию с "головы на ноги":

Устройство частотного регулирования обеспечивает поддержание такой скорости вращения ротора насоса, которая достаточна для создания необходимого напора при данной величине водоразбора. Изменяется не характеристика системы водоснабжения, а производительность насосного агрегата.

Следует отметить, что для точного регулирования требуется задание двух параметров: давления и расхода воды на выходе из насосной станции (лучше - в диктующей точке системы). Однако на практике бывает вполне достаточно удерживать давление на выбранном уровне.

* Как правило, во многих отраслях народного хозяйства, в т.ч. ЖКХ установлены электродвигатели с большим запасом по мощности в расчете на максимальную производительность оборудования, несмотря на то, что часы пиковой нагрузки составляют всего 15%-20% общего времени его работы. В результате электродвигатели с постоянной скоростью вращения потребляют среднесуточно значительно, иногда до 60%, больше электроэнергии, чем это необходимо.

Отсюда следует, что основные резервы сбережения электрической энергии заключены в широкомасштабном применении энергосберегающих электроприводов. Наиболее радикальным, дающим большую экономию электроэнергии способом (до 30%-50%) является оснащение электродвигателей частотными преобразователями, позволяющими регулировать частоту их вращения в зависимости от реальной нагрузки. При этом не требуется замена стандартного электродвигателя, что особенно актуально при реконструкции объектов.

Области применения регулируемого электропривода весьма общирны.

В жилищно-коммунальном хозяйстве и коммерческом секторе это:

- насосы холодной и горячей воды в центральных тепловых пунктах;
- насосные установки водоканальных и тепловых сетей;
- насосные установки очистных станций;
- компрессоры, вентиляторы, кондиционеры, установленные в зданиях.

В топливно-энергетическом комплексе:

- буровые установки, насосы нефтеперекачки и компрессоры газоперекачки;
- экскаваторы, электротрансмиссии мощных карьерных самосвалов, карьерные дизель-троллейвозы, транспортеры и конвейеры, дробилки и мельницы, шахтные подъемные машины и шахтный электротранспорт.
- насосные и вентиляторные установки ТЭС, ТЭЦ, РТС и котельных, насосные установки тепловых сетей и др.

В промышленности и сельском хозяйстве это:

- перемешивающие устройства, центрифуги, насосы, компрессоры, вентиляторы;
- электроприводы обрабатывающих станков, электротранспортеры и конвейеры, печи, мельницы и др.
- ** Другое важное достоинство регулируемого электропривода это снижение эксплуатационных затрат, которое имеет несколько составляющих:
 - снижения величины пусковых токов электродвигателей до уровня номинальных и, соответственно, исключения вредного воздействия этих токов на питающую сеть:
 - практического исключения из работы дросселей, заслонок, различного рода клапанов;
 - исключения гидроударов в гидравлической сети, плавное изменение подачи воздуха в вентиляторах и др., т. е. исключение или существенное снижение динамических воздействий на технологическое оборудование и сети;
 - продления срока службы подшипников и др. вращающихся частей, поскольку механизмы, снабженные преобразователями частоты в течение длительного времени работают с частотами вращения меньшими номинальных. В результате значительно снижаются эксплуатационные расходы и уменьшаются возможности аварийности всего оборудования в целом.

По оценке экспертов считается, что экономический эффект от снижения эксплуатационных затрат по меньшей мере сопоставим с эффектом от прямого сбережения энергоносителей.

*** Третьим важным достоинством применения регулируемого электропривода является экономия воды и тепла при использовании его в насосных установках.

Так в жилищно-коммунальном хозяйстве применение преобразователей частоты в повысительных насосах горячей и холодной воды позволяет экономить до 10%-15% воды и до 8%-10% тепла.

Экономия воды происходит за счет того, что при снижении избыточного давления уменьшается расход воды, а также уменьшаются утечки воды на 10% на каждую атмосферу избыточного давления.

Экономия тепла связана с уменьшением потерь горячей воды при снижении избыточного давления. ЧРЭ позволяет экономить не только электрическую энергию, но и тепловую, снижать электрическую нагрузку в часы максимума, а также экономить воду. Регулируя производительность вентиляторов по объему нагнетаемого воздуха и одновременно уменьшая подачу теплофикационной воды на калориферы, можно обеспечить нужный температурный режим в цехе в соответствии с требованиями санитарно-гигиенических норм, не допуская «перетопа».

ЧРЭ для вентиляторных систем может служить регулятором мощности в часы максимума нагрузки энергосистемы. Кратковременное снижение производительности вентиляторов, практически не оказывая влияния на работу в цехах завода, позволяет предприятию заявить меньшую мощность и, тем самым сократить затраты на электроэнергию при расчетах по двухставочному тарифу.

**** Четвертым эффектом применения ЧРЭ в насосных агрегатах в ЖКХ является социальный фактор, заключающийся в том, что вода на верхних этажах зданий есть в любое время суток (в отличие от способа экономии электроэнергии, когда ночью отключен насос подкачки); а также меньше шум от работающего насоса, т.к. насос в основном работает на пониженных оборотах.

На основе ЧРЭ строятся так называемые станции управления насосными агрегатами . Станция управления состоит из:

- преобразователя частоты (ПЧ), обеспечивающего плавный пуск, останов и регулирование любым электродвигателем станции;
- логического контроллера, осуществляющего получение и обработку информации, и выдачу управляющих воздействий на преобразователь частоты и насосные агрегаты;
- панели управления и сигнализации, позволяющей осуществлять ручное и автоматическое управление преобразователем частоты и насосными агрегатами, визуальный контроль за режимами работы станции, а также оперативно задавать и изменять параметры режима работы станции;
- пусковой аппаратуры, осуществляющей подключение насосных агрегатов к преобразователю частоты или напрямую к сети;
- автоматического включения резерва (ABP);
- комплекта датчиков давления, расхода, и т.п. требуемых для отработки выбранного алгоритма работы станции.

Основными функциями станции управления являются:

- поддержание заданного значения расхода или давления на выходе группы насосных агрегатов;
- автоматическое подключение дополнительных насосов при недостаточной производительности рабочего;
- автоматическое чередование насосов, работающих от ПЧ;
- автоматическое изменение режима работы станции во времени;
- контроль над работой насосов;
- контроль над работой ПЧ;
- возможность дистанционного контроля и управления работой станции;
- возможность запуска и останова каждого насоса в ручном режиме с панели управления прямым пуском от сети.

Несколько слов о вкладе ЧРЭ в различные виды экономии при применении его в агрегатах котельных установок. Речь идет о приводах вентиляторов, дымососов, частотное регулирование подачи которых не только уменьшает потребление электроэнергии, но и позволяет обеспечивать наиболее оптимальный режим сжигания топлива .

И последнее. В отличие от нерегулируемого асинхронного электродвигателя, ЧРЭ представляет собой активную нагрузку для питающей сети.

В связи со всем вышеизложенным, Частотно-регулируемый электропривод является мощным средством энергоресурсосбережения.